
Blooming Trees for Minimal Perfect Hashing
Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci

Dept. of Information Engineering, University of Pisa, ITALY
Email: {gianni.antichi, domenico.ficara, stefano.giordano, gregorio.procissi, fabio.vitucci}@iet.unipi.it

Abstract—Hash tables are used in many networking applica-
tions, such as lookup and packet classification. But the issue
of collisions resolution makes their use slow and not suitable
for fast operations. Therefore, perfect hash functions have been
introduced to make the hashing mechanism more efficient. In
particular, a minimal perfect hash function is a function that
maps a set of n keys into a set of n integer numbers without
collisions. In literature, there are many schemes to construct
a minimal perfect hash function, either based on mathematical
properties of polynomials or on graph theory. This paper pro-
poses a new scheme which shows remarkable results in terms
of space consumption and processing speed. It is based on an
alternative to Bloom Filters and requires about 4 bits per key
and 12.8 seconds to construct a MPHF with 3.8× 109 elements.

I. INTRODUCTION

Hash tables are frequently used in networking applications.
They can be found in compilers, language translation systems,
and information retrieval. But the issue of collisions resolution
makes their use slow and not proper for fast operations.
Therefore, perfect hash functions have been introduced to
alleviate these limitations and to improve performance. A
perfect hash function maps a static set of n keys into a set
of m integers without collisions, where m is greater than or
equal to n. If m is equal to n, the function is called minimal.

Minimal perfect hash functions (MPHFs) are widely used
for memory efficient storage and fast retrieval of items. They
can be used also for security purposes: the capability of
efficiently revealing the presence of certain strings allows for
a fast detection of attacks or for determining which data have
to be anonymized in privacy-preserving approaches [1]. Given
the high operating speeds of current links, item retrieval must
be very fast. Moreover, item sets can be very large (e.g., search
engines are nowadays indexing tens of billions of pages), thus
these algorithms must be very space-efficient.

To summarize, the goodness of a MPHF scheme depends
on the time and the space needed for its construction, on the
time required by the MPHF for each retrieval of an element
and on the number of bits needed to represent the element.

While CAM/TCAM hardware is a fast (yet energy-greedy)
alternative to implement the same functions, the recent general
trend for energy savings and the need for cheap and general
implementation contribute to keep MPHFs important and
attractive in network devices.

This work presents a new technique to construct a minimal
perfect hash function by using specific data structures based

This work has been partially supported by the European Project FP7-ICT
PRISM, contract number 215350.

on Blooming Trees [2]. The main objectives are 1) simple
construction process, 2) fast retrievals, and 3) memory savings.
The target platforms are network processors (NPs) or general
purposes processors (GPPs) that provide the “popcount” in-
struction to compute the number of “1” bits in a word (for
instance Intel® Itanium [3], the future Nehalem [4] and the
IXP2800 [5], AMD® Phenom [6] and IBM® Power6 [7]).

The next section introduces the major results about MPHF
construction. Sec. III illustrates the data structures that will
be used. Sec. IV describes the overall MPHF algorithm, while
sec. V computes its parameters and complexity. Finally, sec.
VI shows simulation results and the comparison with the other
most efficient solutions proposed in the literature.

II. RELATED WORKS

In this section, we present the major results about the
construction of MPHF. For further details, [8] gives a com-
prehensive survey on perfect hashing. Fredman, Komlós and
Szemerédi [9] present a space efficient structure to construct
MPHFs, which uses a space of the order of n + o(n). The
construction time of this model, based on hashing properties,
is O(n), and the same result is also obtained in [10], [11].

Mehlhorn [12] shows that at least 1.44 bits per key are
needed to represent a MPHF. Fox et. al. [13] illustrate an
algorithm whose encoding size is very close to such a theo-
retical bound (i.e., around 2.5 bits per key) and which uses the
well-known mapping-ordering-searching scheme. However,
[8] proves that such a scheme has exponential running times.

Pagh [11] proposes a new way of constructing MPHFs
through randomized algorithms. The form of the resulting
function is h(x) = f(x) + d[g(x)]mod(n), where f and g are
hash functions and d is a set of values to resolve collisions.
The hash function description occupies O(n) words and can
be constructed in O(n) expected time.

Czech et al. [10] introduce a new algorithm for MPHF
which preserves the elements order. It involves the generation
of random graphs; the time complexity is O(n) and the space
required to store the function is O(n log n), which is optimal
for order preserving MPHFs [8]. This algorithm takes 32.9s
to construct a MPHF for 524288 keys on a Sequent machine.

Botelho et al. [14] propose a solution based on the classic
divide and conquer technique, which is capable of generating
MPHFs for sets of billion of keys. The construction time is
O(n log n), the evaluation of h(x) requires 3 memory accesses
for any key x and the description of h takes a number of up
to 9 bits for each key, which is optimal for huge sets.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 1

Authorized licensed use limited to: National Cheng Kung University. Downloaded on May 5, 2009 at 01:28 from IEEE Xplore. Restrictions apply.

To the best of our knowledge, the solution which offers
the best tradeoff between construction time and storage space
is illustrated in [15]. It uses r-uniform random hypergraphs
given by function values of r hash functions on the keys to
be processed. Such an algorithm will be the reference for the
performance evaluation of our solution.

Finally, [16] introduces a novel scheme for MPHF which
requires about 8.6 bits per key. The construction is sev-
eral orders of magnitude faster than existing perfect hashing
schemes based on mapping-partitioning-searching model, be-
cause searching is avoided. Bloom Filters (BFs) are employed,
which are known for simplicity and speed. This schemes,
running on a Pentium IV, needs 7.73s to construct a MPHF for
3.8 millions of keys and 125ms for 110 thousands of keys. It
inspires this work in the use of BF-like structures for MPHFs.
Instead of standard BFs, a composed data structure is used: a
first level is given by a Huffman Spectral Bloom Filter (HSBF)
[17] while the remaining part is based on a novel filter, the
so–called Blooming Tree (BT) [2]. This way, a novel method
is proposed, which allows for an easy MPHF construction and
fast retrieval, with low memory requirements.

III. BLOOMING TREE

The idea of Blooming Trees [2] is constructing a binary tree
upon each element of a plain BF, thus creating a multilayered
structure where each layer represents a different depth-level
of tree nodes. The aim is to achieve both low false positive
probability and low memory requirements, while the drawback
is the increased cost in lookup operation. The latter can be
mitigated by the low memory consumption, that enables the
deployment of the structure in faster on-chip memories.

To build a Naive Blooming Tree (NBT) for n elements,
L + 2 layers are defined:

• a plain BF (B0) with k0 hash functions hj (j = 1 . . . k0)
and m bins such that m = nk0/ ln 2;

• L layers (B1 . . . BL), each composed of mi (i = 1 . . . L)
blocks of 2b bits;

• a final layer (BL+1) composed of c-bits counters.

The j-th hash function hj provides a log2 m + L × b bit
long output: the first group (s0,j) of log2 m bits is used to
address the BF at layer 0, the other L× b bits are divided into
L substrings (s1,j . . . sL,j) of b bits, one for each layer.

The lookup for an element σ consists of a check on k0

elements in the BF (layer 0) and an exploration of the cor-
responding k0 “branches” of the Blooming Tree. The overall
process of lookup is accurately explained in [2].

An optimized version of BT [2] follows from some ob-
servations about NBTs. In particular, the “zero-blocks” are
used to stop the “branch” from growing as soon as the
absence of a collision is detected in a layer (which entails for
construction the absence of collisions in all the upper layer
of the branch). However, to keep construction and lookup
possible, the Optimized BT (OBT) employs a bitmap and an
array of hash substrings for each layer. The array of substrings
for a certain layer is composed of all the hash substrings that

complete the hash of the “branches” that stop at that layer,
while the bitmap addresses such substring array.

IV. THE MPHF CONSTRUCTION

Our algorithm is based on the statement that, given an
ordering algorithm g and a set S, a MPHF of an element x ∈ S
is simply the position of x in the given ordering scheme:

MPHF(x) = position
S,g

(x) (1)

A. Using the Naive Blooming Trees

The basic idea of our algorithm is to use a BT as ordering
algorithm for the set of elements S we have:

MPHF(x) = position
S,BT

(x) (2)

In particular, the NBT can be used for this purpose with no
modifications. The construction is exactly the same as the one
described in section III, using a single hash function. All we
need to care is to make sure that the counters at layer L + 1
are all equal to 1, which means that all the elements have been
separated. In this situation, in order to evaluate MPHF(x), a
single lookup operation is required: once the corresponding
(say, the j-th) counter of x in layer BL+1 is found, we return
j (obtained through a simple popcount) as the result.

We need to design the structure to have very low probability
of collisions in the last layer (BL+1). This, in turn, results in a
high probability of obtaining a successful MPHF construction
in a few attempts. If the construction is successful, we achieve
our ordering scheme: the element that falls into the first
counter is hashed to 0, the element falling into the second
one is hashed to 1, and so on. Therefore, our hash function is
perfect and also minimal, in that we assign the first n integers
as the results of hash retrieval for n elements.

B. Using the Optimized Blooming Tree and the HSBF

The OBT is an elaborated version of the NBT that improves
memory efficiency, thus being attractive for our purposes. The
idea is blocking branch from growing, as soon as an element
does not experience any collision, by using the zero-blocks
as leaves of the trees. However, this expedient removes the
last layer, which till now provided a simple way to compute
a MPHF by means of popcounts.

Recall that the problem lies in how to compute the number
of elements at the left of a given element x. Our idea to solve
this problem is to divide the procedure into two steps:

• find the tree which x belongs to (we shall call it Tx) and
compute the number of elements at the Tx’s left;

• compute the number of leaves at the left of x within Tx.

In order to do so, we propose the HSBF [17] as the first level of
the BT, instead of the standard BF [2]. The HSBF is composed
of a series of bins encoded by Huffman coding so that a value
j translates into j “1s” and a trailing “0”. Therefore, the first
step (i.e.: computing the number of elements in the trees at
Tx’s left) is obtained by a popcount in the HSBF of all the
bins at the left of x’s bin. As for the second step, we have to

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 2

Authorized licensed use limited to: National Cheng Kung University. Downloaded on May 5, 2009 at 01:28 from IEEE Xplore. Restrictions apply.

explore (from left to right) the tree Tx until we find x, thus
obtaining its position within the tree. The sum of these two
components gives the hash value to be assigned:

MPHF(x) = popcount(HSBF[x]) + position
Tx

(x) (3)

Notice that, in a standard BT, the popcount in the first layer
gives the block to be read at the next layer. To achieve the same
functionality in an HSBF, it suffices to count the number of
bins greater than 0 (i.e.: the number of “10” bit-sequences).

The HSBF is divided into B sections of D bins, which
are addressed through a lookup table. Each entry of this table
keeps all the necessary information for a section: the starting
address in memory, the number of elements that fall in the
previous sections (which are computed by means of popcounts,
as stated above), and the number of “10” bit-sequences found
in the previous sections. The OBT has a maximum of L layers
(B1 . . . BL), each composed of blocks of 2b bits.

A hash function h(·) is used. Its output is log2 B+log2 D+
Lb long bits: the first log2 B bits indicate the section and
address the lookup table, the subsequent log2 D bits index the
bin within the section in the HSBF, while the last ones are
divided into substrings of b bits, one for each BT layer.

A simple example (see fig.1) clarifies the procedure. Let us
assume B = 2, D = 3, and b = 1: hence, the hash output
is 6-bits long. Let us suppose h(x) = 101110. The first bit is
used to address the lookup table: it points to the second entry.
We read the starting address of section D2 and that 3 elements
are in the previous sections. Now we use the next two bits of
h(x) to address the proper bin in section D2: “01” means the
second bin. The popcount of the previous bins in the section
indicates that another element is present (so far the total of
elements at Tx’s left is 4). Then we care about Tx: to move
up to the next layer, we both use the third information in the
table and count the number of “10”s in the previous bins of
this section. The sum shows that, before our bin, 3 bins are
not equal to 0, so we move to the fourth block in layer B1.

Here, the fourth bit of h(x) allows to select the bit to be
processed: the second one. But we want to know all the Tx’s
leaves at x’s left. Hence, we must explore all the branches
starting from the first bit of the block and count the number
of zero-blocks we find: it is 2 (now, the counter reads 6).
Regarding the second bit, a popcount in layer B1 indicates the
third block in layer B2: it is a zero-block, so we have found
the block representing our element: x is the 7-th element in
our ordering scheme. Then MPHF(x) = 6.

An obvious objection is that a lookup may require many
jumps and be expensive since we need to explore, on average,
half a tree to find our element. However, this is not a big
issue because all the nodes of a tree at the same layer are
contiguous in memory and can be accessed (and cached) in a
single memory reference. Hence, the number of accesses for
an element is simply the depth of the tree it belongs to.

Finally notice that, in the evaluation process, bitmaps and
hash substrings tables have not been used; therefore, after the
MPHF construction, they can be removed from memory.

h(x) =

B0

B1

B2

B3

0 10 110 10 1110 0
Y1 Y2

0 0 1 0 0 0 1 1

1 1 1 1 0 0

0 0 0 0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

1 1 0 1

D1 D2

1 01 1 1 0

log2 B
(bits)

log2 D
(bits)

L × b
(bits)

Lookup Table

Start addr. Prev. elements Prev. “10”s

Y1 0 0
Y2 3 2

Figure 1. Example of hash retrieval by using OBT and HSBF.

C. Using a more efficient version

Another potential improvement becomes clear as we make
the following remark on the above described structure: when-
ever a bin in the HSBF is equal to 1 (i.e.: it reads “10”), it is
a waste of memory to allocate its zero-block at the next layer,
because only a single element falls into it. Since the probability
of having a bin equal to 1 is larger than the probability of
large bin values in a CBF (see eq. (4) in the next section),
this improvement notably reduces the average cost in terms of
lookup time and memory size.

The construction process does not change but, after the
construction, the structure can be reduced according to the
previous discussion. Also, the lookup table must be modified:
the third element of each entry must now indicates the number
of “110” bit-sequences in the previous sections of the HSBF,
because only bins strictly greater than 1 have a corresponding
block at layer 1 under this new scheme.

The example in fig. 2 shows the reduction of the structure of
fig. 1: we observe the deletion of the first and the third blocks
in B1, which were related to the second and the fourth bins
in the HSBF (the “10” bins), and the change of the lookup
table.

V. COMPLEXITY AND PROPERTIES

In order to simplify the rest of the analysis, it is useful to
remind one of the main results of [2]:

Pi(ϕ) � e−αiαϕ
i

ϕ!
= Poisson(αi, ϕ) with αi = 2−i ln 2 (4)

Eq. (4) claims that the number of elements ϕ colliding in any
block of layer i can be well-approximated by a Poisson pmf
with parameter αi. This result provides a tool to design our
MPHF. In particular, we can compute the number of layers
needed to guarantee a fast construction (“fast”, here, means
“within one or few trials”) of our BT by simply setting:

n × PL+1(2) � q (5)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 3

Authorized licensed use limited to: National Cheng Kung University. Downloaded on May 5, 2009 at 01:28 from IEEE Xplore. Restrictions apply.

B0

B1

B2

B3

0 10 110 10 1110 0
Y1 Y2

1 0 1 1

1 1 1 1 0 0

0 0 0 0 0 0 0 0

0 0 1

0 1 0 1 1

1 1 0 1

D1 D2

Lookup Table

Start addr. Prev. elements Prev. “10”s

Y1 0 0
Y2 3 1

Figure 2. Example of hash retrieval in the optimized structure.

where q ≤ 1 is the probability of having at least a bin
greater than 1 at layer L + 1; in addition, q corresponds to
the probability of the unlucky event that we need to retry the
construction (it is also called the failure probability [16]).

In that event, a different approach can be pursued by just
adding extra layers until the collisions disappear. This requires,
of course, the output of the hash function h(·) to be wider than
log2 B + log2 D + Lb bits, but it can be less expensive than
restarting the entire construction from scratch.

A. Memory requirements

The average size of our MPHF can be computed as the
sum of its components. As for the OBT, since we do not
need all its complementary structures such as bitmaps and
hash substrings, we compute its size as the sum of leaves and
non-leaves nodes. In the structure described in section IV-B
the number of leaves is simply the number of elements n.
However, in the optimized structure described in section IV-C,
we delete the layer 1 leaves, thus obtaining n − m0P0(1) =
n(1 − P0(1)/ ln 2) leaves. On the other hand, the number of
non-leaves nodes can be computed as m0Pi(ϕ > 1). Thus the
average memory size of our OBT is:

SOBT = 2b

(
n(1 − P0(1)/ ln 2) + m0

Nl∑
i=1

Pi(ϕ > 1)

)
(6)

where Nl is the number of required layers and Pi(ϕ > 1) =
1 − Pi(0) − Pi(1) can be computed by means of (4).

When dealing with perfect hash functions, it is common to
express the memory requirements in terms of bits per key:

S/n = 2b

(
1/2 +

1
ln 2

Nl∑
i=1

Pi(ϕ > 1)

)
+ 1 +

1
ln 2

(7)

A first comment is that b = 1 is the less expensive choice
in terms of memory consumption. Larger values of b reduce
the depth of the blooming tree (that is the number of non-
leaves nodes) but its contribution to S/n in (7) is negligible.
Therefore, b = 1 shall be the preferred setting hereafter.
Moreover, we notice that the optimization process discussed
in IV-C reduces the number of bits-per-key metric of 0.5 bits.

Table I
MEMORY REQUIREMENTS IN BITS/KEY.

b WHSBF WOBT ∆SHSBF ∆SOBT S′ Stot

1 512 512 0.45 0.10 3.63 4.18
1 1024 1024 0.23 0.06 3.63 3.92
1 2048 2048 0.11 0.03 3.63 3.77
2 512 512 0.45 0.10 4.82 5.37
2 1024 1024 0.23 0.06 4.82 5.11
2 2048 2048 0.11 0.03 4.82 4.96

However a number of tables are needed in order to make the
lookup phase faster and more manageable. In fact, both the
HSBF and the upper layers can be divided in sections so that
accessing them or computing a popcount requires less time.
We already discussed in section IV-B about the tables for the
HSBF. Now, we also consider dividing each layer of the OBT
into sections and adding, for each layer, a table whose j-th
entry reports the popcount of all bits before section j.

Naturally, the increment in memory requirements introduced
by these tables depends on B and D. If we focus on the
bits/key metric, we can compute the table cost in memory
through b and W only (i.e., the bit size of sections). Tab.
I reports the consumption in bits/key for the total structure
(Stot) along with the contributions of lookup tables for the
HSBF (∆SHSBF) and the OBT (∆SOBT), which are added
to the main structure S′. A good choice is W = 1024 bits: all
the tables cost only 0.29 bits per key, thus bringing the final
memory requirement to 3.92 bits per key. Moreover, in modern
64-bits processors, 1024 bits represent 16 words only, and can
be read in a single memory access. However, other values of
W do not significantly change the final memory budget.

B. Hash evaluation cost

In the following study on the average cost of a lookup, we
focus on the number of memory accesses. Indeed a memory
access commonly requires hundreds of clock cycles, thus
accounting for almost the totality of the hash evaluation cost.

During a lookup, we have to compute a hash function and
use its output to address the lookup table and the HSBF.
Moreover, if the bin we read reports a collision (i.e.: more
than 1 element falls into it), we need to explore a certain
number of layers according to the depth of the resulting tree.
Eq. (4) comes in handy also in this computation. It expresses
the pmf of m bins, but we do not care about empty bins.
Therefore we need to normalize the pmf in (4) by dividing it
by (1 − P0(0)) = 1/2:

P ′
i (ϕ) =

{
Pi(ϕ)

1−P0(0)
= 2 × Pi(ϕ) ϕ ≥ 1
0 ϕ = 0

(8)

Of course, P ′
i (0) = 0 because we will not lookup empty bins.

Then n×P ′
0(1) times we will access only the lookup table and

the HSBF. This costs two memory accesses (if a HSBF section
is read in a single access). In all other cases (n× (1−P ′

0(1))
times), we have a tree to explore.

As previously mentioned, in our construction all nodes of a
tree at the same layer are contiguous in memory. This means

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 4

Authorized licensed use limited to: National Cheng Kung University. Downloaded on May 5, 2009 at 01:28 from IEEE Xplore. Restrictions apply.

Table II
ALGORITHM COMPARISON.

Algorithm
Evaluation Construction Time

bits/key
time(s) mem.ref. mean(s) std.dev

Our
m = 222 1.21 3.1 12.78 0.11 4.02
m = 223 0.98 2.53 13.37 0.14 4.75

BPZ 1.35 - 18.37 4.41 3.60
BL - 2.38 7.73 - 9.1

that, as a matter of fact, when accessing a given node we read
(and cache) all the other nodes at the same layer. Therefore the
average number of memory accesses for the tree exploration
is simply the average tree depth d =

∑L+1
i=1 i × P ′

i (1) � 2.4.
Finally, the average number of memory accesses is:

w = 2 + (1 − P ′
0(1))d � 2.73 (9)

It does not depend in any way on the number of elements,
hence the lookup cost is O(1).

VI. EXPERIMENTAL RESULTS

We compare our algorithm to the one proposed by Bonomi
and Lu [16] (hereafter called BL) and to the fastest and least
memory-requiring algorithm that we found [15] (BPZ). We
are aware that, because of the processor evolution and the
limited availability of the code of other algorithms, it is always
difficult to present fair comparisons for algorithms. We tested
an implementation of our algorithm (developed in C) on an
Intel 2.4 Ghz Pentium 4 Core 2 Duo processor (4 MB L2-
Cache), equipped with 4 GB of RAM and running Linux OS
2.6, while BPZ employed a 3.2 Ghz XEON (2 MB L2-Cache),
with 1 GB of RAM running Linux 2.6 and BL describes its
test platform simply as Pentium 4. Even if the processor we
used is dual-core, this does not give us any advantage because
our implementation is sequential and runs on a single core.
This means also that, even if the L2-cache is 4 MB, only half
of it is available (on average) to our algorithm. Both papers
(on BPZ and BL) present their results for a similar number of
keys (3.541.615 for BPZ and 3.8 million for BL) thus we set
n = 3.8 × 106 in our algorithm.

In tab. II we show a comparison of BPZ, BL and our
algorithm in terms of construction and lookup time, as well
as memory requirements. The lookup time is obtained by
querying the MPHF for all the 3.8×106 keys in random order.

Since in our algorithm we would like to have m � n/ ln 2,
we have two choices for the first layer: m = 222 or m = 223.
We tested both. In the first case, we measured 3.1 memory
accesses (on average) and 4.02 bits per key, while in the
second case we had a faster lookup, but an increment of
about 0.7 bits per key in the size and of more than 0.5s
in the construction time. Such values confirm the theoretical
results of the previous section. As for the failure probability,
by limiting the number of layers to 10, it turned out to be less
than 5×10−4 in all cases. However, on processors such as the
ones cited in sec. I, both construction and lookup times will
decrease because of the high frequency of popcount calls.

Results clearly show an improvement in terms of construc-
tion and lookup time as compared to BPZ, at the cost of a
slight increase in memory requirement. Instead, compared to
BL, our solution halves the bits-per-key metrics, while slowing
down lookup and construction processes.

VII. CONCLUSION

The paper presents a new solution for the construction of a
minimal perfect hash function, which is useful in many net-
working applications. We use two novel data structures which
we previously introduced in recent works: Huffman Spectral
Bloom Filters and Blooming Trees. The overall multilayered
structure is based on randomized algorithms and allows for
remarkable memory savings. We compared our algorithm to
the one proposed in [16], which uses another BF-like structure,
and to the one described in [15] which, to the best of our
knowledge, offers the best performance in terms of lookup
time and memory consumption. Our solution shows about
the same performance compared to BPZ and a remarkable
memory saving with respect to BL. In details, it presents a
consumption of about 4 bits/key and a retrieval time of about 1
second. Moreover, its specific design allows to take advantage
of the new features of recent and future processors, both for
networking and general purposes applications.

REFERENCES

[1] G. Bianchi, S. Teofili, M. Pomposini, “New directions in privacy-
preserving anomaly detection for network traffic,” in Proc. of Network
Data Anonymisation (NDA 2008), Virginia, USA, October 2008.

[2] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “Blooming trees:
Space efficient structures for data representation,” in Proc. of ICC’08,
Beijing, China, May 2008.

[3] http://www.intel.com/design/itanium/documentation.htm.
[4] http://softwarecommunity.intel.com/isn/Downloads/Intel SSE4 Program-

ming Reference.pdf.
[5] http://www.intel.com/design/network/products/npfamily/ixp2805.htm.
[6] http://vincent.amd.com/us-en/assets/content type/white papers and tech

docs/40546.pdf.
[7] http://www.power.org/resources/reading/PowerISA V2.05.pdf.
[8] Z. J. Czech, G. Havas, and B. S. Majewski, “Fundamental study - perfect

hashing,” Theoretical Computer Science, vol. 182, no. 1, August 1997.
[9] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a sparse table

with 0(1) worst case access time,” J. ACM, vol. 31, no. 3, 1984.
[10] Z. J. Czech, G. Havas, and B. S. Majewski, “An optimal algorithm

for generating minimal perfect hash functions,” Information Processing
Letters, vol. 43, no. 5, 1992.

[11] R. Pagh, “Hash and displace: Efficient evaluation of minimal perfect
hash functions,” in Workshop on Algorithms and Data Structures, 1999.

[12] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching,
ser. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 1984, vol. 1.

[13] E. A. Fox, L. S. Heath, Q. F. Chen, and A. M. Daoud, “Practical minimal
perfect hash functions for large databases,” Commun. ACM, vol. 35,
no. 1, 1992.

[14] F. C. Botelho, Y. Kohayakawa, and N. Ziviani, “An approach for minimal
perfect hash functions for very large databases,” Universidade Federal
de Minas Gerais, Belo Horizonte, Brazil, Tech. Rep., 2006.

[15] F. C. Botelho, R. Pagh, and N. Ziviani, “Simple and space-efficient
minimal perfect hash functions,” Springer-Verlag Lecture Notes in
Computer Science, vol. 4619, 2007.

[16] Y. Lu, B. Prabhakar, and F. Bonomi, “Perfect hashing for network
applications,” in Proceedings of International Symposium on Information
Theory 2006, 2006.

[17] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “Multilayer com-
pressed counting bloom filters,” in Proc. of INFOCOM ’08, Phoenix,
AZ, USA, April 2008.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 5

Authorized licensed use limited to: National Cheng Kung University. Downloaded on May 5, 2009 at 01:28 from IEEE Xplore. Restrictions apply.

